суббота, января 12

Что такое оконная функция в анализе Фурье, какие типы оконных функций существуют?

Что такое оконная функция в анализе Фурье, какие типы оконных функций существуют?


Коротоко: Если вкратце, то смысл таков. Как известно, спектральное разложение проводится не для всего сигнала целиком, а кусками (почему? - ясно: либо мы имеем точный спектр, но не знаем в какой момент времени какая спектральная составляющая возникла, либо наоборот, режем сигнал на отрезки и в каждом отрезке знаем менее точный спектр, но зато имеем представление о том, когда и какое изменение спектра произошло). Спектральный анализ, в теории, предназначен для анализа неприрывных периодических сигналов. При обрезании сигнала, в спектре появляются несуществовавшие в сигнале высокочастотные составляющие. Чтобы бороться с их появлением и прибегают к использованию т.н. оконных функций, изменяющих оригинальный сигнал в каждом анализируемом окне (отрезке).

Более развернуто: Анализ спектра опирается на весьма непростой математический аппарат и детально его объяснить без применения математики вряд ли возможно. Имеются различные методы этого анализа. Для работы со звуком наиболее часто применяются методы, основанные на преобразованиях Фурье (ПФ). БПФ - быстрое преобразование Фурье - модифицированнный алгоритм, преследующий цель значительно уменьшить количество арифметических операций, выполняемых во время ПФ. На английском - "FFT" - "fast Fourier transform".

При открытии звукового файла в редакторе мы видим волновую форму сигнала - по оси Y показаны значения отсчетов, а по оси X - время. При помощи БПФ мы можем перейти к частотной форме: по оси Y мы будем иметь амплитуду, а по оси X - частоту. Вычисления производятся для заданного отрезка сигнала. Для вычислений необходимо задать FFT size - так называемый интервал наблюдения (длина отрезков, на которые "нарезается" анализируемый сигнал) и коэффициент перекрытия (коэффициент наложения анализируемых участков сигнала друг на друга; наиболее употребительные его зачения: 0,5 и 0,75). Перед выполнением преобразования Фурье интервал наблюдения обрабатывается специальной оконной функцией (значения отсчетов в анализируемом окне умножаются на значения оконной функции). Выбор оконной функции влияет на точность полученного спектра. Названия этих функций мы и видим в установках спектроанализатора: прямоугольная, треугольная, Блэкменна, Хэмминга, Бесселя-Кайзера и т. д. Самая простая - прямоугольная. Все ее значения равны 1 . Значения треугольной функции для n=6 следующие: p(0)=0, p(1)=1/3, p(2)=2/3, p(3)=1, p(4)=2/3, p(5)=1/3. Если интервал наблюдения равен 1024, то, соответственно, мы должны брать и оконную функцию для 1024 точек. Другие функции определяются довольно сложными математическими формулами. Выбор наиболее предпочтительной оконной функции требует детального анализа сигнала и в случае обработки звука в основном не требуется. Общеупотребительные оконные функции для этих целей - Блэкменна, Хэмминга и Хэннинга. В конечном счете выбор зависит от поставленной задачи. Если, например, предполагается, что в спектре имеется некоторый тон с большой амплитудой, частоту которого нужно определить, то можно просто сравнить результаты применения разных оконных функций. Острота пика этого тона будет разной и это может помочь более точному определению частоты.

Увеличение интервала наблюдения увеличивает точность и время вычислений. При определении спектра сигнала интервал наблюдений "скользит" от начала промежутка к концу с заданным коэффициентом перекрытия. Если он равен 0,5, а длина интервала наблюдений равна 1024, то в следующем его положении будет 512 "старых" точек и 512 новых.

(ответами послужили два сообщения на форуме WebSound.Ru).

Каковы принципы работы динамического и компандерного шумоподавителей для магнитофонов?

Каковы принципы работы динамического и компандерного шумоподавителей для магнитофонов?

1. Динамический шумоподавитель.

Принцип его работы заключается в том, что при снижении уровня высокочастотных составляющих в воспроизводимом сигнале динамический фильтр уменьшает полосу пропускания канала воспроизведения. Обычно регулировка начинается в районе 5-ти кгц. Нижняя часть частотной полосы передается без изменений. Фильтр управляется сигналом, который вырабатывается специальной схемой, уровень его зависит от уровня воспроизводимого сигнала выше частоты среза. В свою очередь от уровня управляющего сигнала зависит частотная характеристика канала воспроизведения. Как следствие этого, при высоком уровне сигнала в полосе выше 5 кгц полоса пропускания канала воспроизведения полная, но в этом случае высокие частоты маскируют шум ленты. Если высоких мало, то уменьшается полоса пропускания и уменьшается слышимый шум ленты. Таким образом, при воспроизведении через ДШП частотная характеристика канала воспроизведения все время изменяется в зависимости от сигнала. К сожалению, характеристика регулировки далеко не всегда дает желаемый результат. В одних случаях неоправданно снижается уровень передачи высоких частот и они срезаются, в других недостаточно подавляется шум. Очень характерная ситуация - образование шумовых хвостов за короткими резкими звуками. Они имеют довольно широкий спектр, что приводит к расширению полосы пропускания и пока фильтр ее опять не уменьшит слышен этот самый шумовой хвост. Работают динамические шумоподавители только при воспроизведении.

2. Компандерный шумоподавитель.

Компандерные шумоподавители затрагивает и процесс записи. Идея заключается в том, чтобы при снижении уровня высокочастотных составляющих во входном сигнале возрастал уровень записи на этих частотах по отношению к стандартному усилителю записи. Для наших рассуждений будем считать шум ленты постоянным. Это шум, который мы можем слышать, воспроизводя стертую (в магнитофоне, а не внешним размагничивающим устройством) ленту. Понятно, что чем меньше уровень записанного сигнала, тем явственней мы будем этот шум слышать. В компандерном шумоподавителе эффект шумопонижения достигается за счет того, что во время записи уровень записи высокочастотных составляющих увеличивается при уменьшении их уровня. При воспроизведении должно обеспечиваться восстановление сигнала. Цифры, приводимые ниже, имеют чисто иллюстративное назначение. Пусть 0 db максимальный уровень записи. Если в текущий момент уровень сигнала на входе (мы рассматриваем верхнюю часть звукового диапазона) равен -10 db, т.е. уменьшился на 10 db, то в магнитофоне без шумопонижения уровень записи также уменьшится на эту же величину. В магнитофоне с шумопонижением это падение будет меньше. Пусть, для определенности, это будет 8 db. Следовательно уровень записи будет на 2 db выше, чем в предыдущем случае. С пониженим уровня эта разница возрастает. Скажем при снижении уровня входного сигнала на 60 db уровень записи упадет только на 40 db, т.е. по отношению к обычному магнитофону разница уже 20 db. Правильное воспроизведение такой записи требует, чтобы тракт воспроизведения имел зеркальную характеристику. Т.е., если воспроизодимый с ленты сигнал имеет уровень -40 db, то его нужно уменьшить на 20 db, если 0 db, то и оставить 0 и т.д. Таким образом, получается, что при записи высокие "приподнимаются" (тем больше, чем они слабее), а при воспроизведении характеристика восстанавливается. Т.к. шум ленты практически не меняется, то это и приводит к слышимому снижению уровня шума. Это только принцип, детали в данном случае нам не важны. Теперь без труда можно представить, что будет если записанную без шумопонижения ленту воспроизводить с шумопонижением. Воспроизведение будет совершенно неправильным. Совершенно неправильно будут воспроизводиться и ленты, записанные с шумопонижением без его включения. Все это происходит потому, что при записи с шумопонижением уровень записи на высоких частотах постоянно изменяется в зависимости от входного сигнала и для правильного воспроизведения нужно, чтобы при воспроизведении динамическая частотная характеристика была строго обратной. Еще пара штрихов. При компандерном шумопонижении понижения шума собственно в сигнале не происходит: если на вход идет шум, то он будет прекрасно записываться и потом воспроизводиться. Имеются трудности для правильного воспроизведения даже на одном и том же аппарате. С износом рабочей поверхности головки происходит увеличение эффективной ширины зазора и, как следствие, ухудшается частотная характеристика. Это в свою очередь препятствует правильному восстановлению. Отсюда следует, что:
- записи, сделанные без шумопонижения следует без него и воспроизводить,
- правильное воспроизведение записей, сделанных с шумопонижением без применения шумоподавителя невозможно.
В заключение можно сказать, что при наличии компьютера со звуковым трактом приемлемого качества динамический шумоподавитель можно эффективно заменить не только при оцифровке для последующей записи на компакт-диск, но и просто при прослушивании. Для этого можно воспользоваться проигрывателем Winamp. Дополнительно потребуются подмодули Line In и Adapt-X и некоторый DX модуль для снижения шума.. Line In позволяет прослушивать сигнал, поступающий на звуковую карту, Adapt-X обеспечивает подключение DX модулей к проигрывателю. Для прослушивания остается подключить скажем Sonic Foundry Noise Reduction Plugin (если он имеется) и настроить его.

Что Мы слышим?

Что мы слышим?

В ответ на вопрос о том, какой диапазон частот способно услышать человеческое ухо нередко можно получить "классический" ответ: от 20 герц до 20 килогерц. Думаю, подобному слуху могли позавидовать бы многие музыканты и "аудиофилы", даже не подозревающие, насколько ниже их реальные возможности. В действительности человеческое ухо наиболее чувствительно к звукам, находящимся в пределах 1-4 килогерца, что соответствует области человеческой речи. С повышением частоты чувствительность снижается и уже далеко не все люди будут четко слышать 16 килогерцовый тон (с возрастом чувствительность к высоким частотам снижается). 18 килогерц обычно является порогом, за которым человеческое ухо перестает воспринимать высокочастотные сигналы, и хотя редкие обладатели "золотых ушей" (к которым любят причислять себя аудиофилы) способны слышать 19 и даже 20 килогерные тона, на практике даже эти люди неспособны отличить на слух от оригинала композицию с использованием среза на 18 килогерц. Случаи, когда человек может слышать еще более высокие частоты известны науке, но это уже уникальные результаты, не имеющие отношения к музыке. Аналогично дело обстоит и в области низких частот. Периодически появляются сообщения о том, что человек способен слышать звуки ниже 20 герц, однако в этих случаях звуки скорее ощущаются, а не слышатся (низкие частоты человек воспринимает не ушами, а телом, ощущая вибрации). Так что не стоит отчаиваться, если вы окажетесь неспособным услышать звуки выше 18 Кгц. Скорее всего, находящийся рядом меломан, гордящийся идеальным слухом, также их не услышит.